Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 453
1.
J Gen Virol ; 105(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38656455

Porcine epidemic diarrhea (PED) is a serious disease in piglets that leads to high mortality. An effective measure that provides higher IgA levels in the intestine and milk is required to decrease losses. Porcine epidemic diarrhea virus (PEDV) was dissolved in calcium alginate (Alg) and combined with chitosan (CS) via electrostatic interactions between cationic chitosan and anionic alginate to create a porous gel (Alg-CS+PEDV). The gel was used to immunize mice orally or in combination with subcutaneous injections of inactivated PEDV vaccine. At 12 and 24 days after immunization, levels of IgA and IgG in Alg-CS+PEDV were higher than with normal PEDV oral administration. At 24 days after immunization, the concentration of IFN-γ in Alg-CS+PEDV was higher than with normal PEDV oral administration. Furthermore, oral administration combining subcutaneous immunization induced higher levels of IgG and IgA than oral administration alone. Our study provides a new method for the preparation and administration of oral vaccines to achieve enhanced mucosal immunity against PEDV.


Alginates , Antibodies, Viral , Chitosan , Immunity, Mucosal , Immunoglobulin A , Immunoglobulin G , Porcine epidemic diarrhea virus , Viral Vaccines , Animals , Administration, Oral , Porcine epidemic diarrhea virus/immunology , Alginates/administration & dosage , Chitosan/administration & dosage , Mice , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antibodies, Viral/immunology , Immunoglobulin A/immunology , Immunoglobulin G/blood , Swine , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Vaccines, Inactivated/administration & dosage , Vaccines, Inactivated/immunology , Swine Diseases/immunology , Swine Diseases/prevention & control , Swine Diseases/virology , Female , Gels/administration & dosage , Mice, Inbred BALB C , Interferon-gamma/immunology , Glucuronic Acid/administration & dosage , Hexuronic Acids/administration & dosage
2.
Commun Biol ; 7(1): 465, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632312

High temperature and humidity in the environment are known to be associated with discomfort and disease, yet the underlying mechanisms remain unclear. We observed a decrease in plasma glucagon-like peptide-1 levels in response to high-temperature and humidity conditions. Through 16S rRNA gene sequencing, alterations in the gut microbiota composition were identified following exposure to high temperature and humidity conditions. Notably, changes in the gut microbiota have been implicated in bile acid synthesis. Further analysis revealed a decrease in lithocholic acid levels in high-temperature and humidity conditions. Subsequent in vitro experiments demonstrated that lithocholic acid increases glucagon-like peptide-1 secretion in NCI-H716 cells. Proteomic analysis indicated upregulation of farnesoid X receptor expression in the ileum. In vitro experiments revealed that the combination of lithocholic acid with farnesoid X receptor inhibitors resulted in a significant increase in GLP-1 levels compared to lithocholic acid alone. In this study, we elucidate the mechanism by which reduced lithocholic acid suppresses glucagon-like peptide 1 via farnesoid X receptor activation under high-temperature and humidity condition.


Gastrointestinal Microbiome , Glucagon-Like Peptide 1 , Animals , Mice , Glucagon-Like Peptide 1/genetics , Glucagon-Like Peptide 1/metabolism , Humidity , Proteomics , RNA, Ribosomal, 16S , Temperature , Transcription Factors , Bile Acids and Salts , Lithocholic Acid
3.
Int J Mol Sci ; 25(6)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38542448

The intestinal ecological environment plays a crucial role in nutrient absorption and overall well-being. In recent years, research has focused on the effects of extracellular vesicles (EVs) in both physiological and pathological conditions of the intestine. The intestine does not only consume EVs from exogenous foods, but also those from other endogenous tissues and cells, and even from the gut microbiota. The alteration of conditions in the intestine and the intestinal microbiota subsequently gives rise to changes in other organs and systems, including the central nervous system (CNS), namely the microbiome-gut-brain axis, which also exhibits a significant involvement of EVs. This review first gives an overview of the generation and isolation techniques of EVs, and then mainly focuses on elucidating the functions of EVs derived from various origins on the intestine and the intestinal microenvironment, as well as the impacts of an altered intestinal microenvironment on other physiological systems. Lastly, we discuss the role of microbial and cellular EVs in the microbiome-gut-brain axis. This review enhances the understanding of the specific roles of EVs in the gut microenvironment and the central nervous system, thereby promoting more effective treatment strategies for certain associated diseases.


Extracellular Vesicles , Brain-Gut Axis , Central Nervous System , Environment , Food
4.
Animals (Basel) ; 14(6)2024 Mar 16.
Article En | MEDLINE | ID: mdl-38540018

This study aimed to assess the effects of different dietary vitamin D3 (VD3) levels on growth and carcass performance, tibia traits, meat quality, and intestinal morphology of yellow-feathered broilers. One-day-old broilers (n = 1440) were assigned into four treatment groups with six replicates per group, and each replicate contained 60 chicks. Dietary VD3 significantly improved the growth performance and carcass traits of broilers, and only low-dose VD3 supplementation decreased the abdominal fat percentage. High-dose VD3 supplementation improved intestinal morphology in the finisher stage, while the b* value of breast muscle meat color decreased markedly under VD3 supplementation (p < 0.05). Serum Ca and P levels and the tibia composition correlated positively with dietary VD3 supplementation at the early growth stage. The weight, length, and ash contents of the tibia increased linearly with increasing dietary VD3, with maximum values achieved in the high-dose group at all three stages. Intestinal 16S rRNA sequencing and liver transcriptome analysis showed that dietary VD3 might represent an effective treatment in poultry production by regulating lipid and immune-related metabolism in the gut-liver axis, which promotes the metabolism through the absorption of calcium and phosphorus in the intestine and improves their protective humoral immunity and reduces infection mortality. Dietary VD3 positively affected the growth-immunity and bone development of broilers during the early stage, suggesting strategies to optimize poultry feeding.

5.
Microbiol Spectr ; 12(4): e0389423, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38488394

Recently, Enterococcus has been shown to have gastric protective functions, and the mechanisms by which Enterococcus modulates gastric function are still being investigated. Herein, we investigated how Enterococcus faecium (Efm) and E. faecium-derived extracellular vesicles (EVs) (EfmEVs) exert protective effect against ethanol-induced gastric injury by investigating the effect of EfmEVs on gastric mucosal ulcer scoring, histological lesion, mucosal glycoprotein production, acidity, anti-oxidative function, and inflammatory responses in rat. Pretreatment with Efm showed significant reduction of ethanol-induced gastric injury, as evidenced by the lowering of ulcer index, histological lesion, gastric pH, and inflammatory responses and the enhancement of mucosal glycoprotein production and anti-oxidative function. Further functional studies on three bioactive components [inactivated Efm, EfmEVs (EVs), and EV-free supernatants] of the bacterial culture showed that EVs are mostly responsible for the gastroprotective effect. Moreover, EV secretion is beneficial for the gastroprotective effect of Efm. Hence, EVs mediated the protective effect of Efm against ethanol-induced gastric injury by lowering inflammatory responses and enhancing anti-oxidative function and may be a potent anti-inflammatory and anti-oxidative strategy to alleviate hyperinflammatory gastrointestinal tract conditions.IMPORTANCEThis study indicated that Enterococcus faecium provided a protective effect against rat gastric injury, which involved improvement of the mucosal glycoprotein production, anti-oxidative function, and inflammatory responses. Furthermore, we confirmed that three bioactive components (inactivated Efm, extracellular vesicles, and EV-free supernatants) of E. faecium culture also contributed to the gastroprotective effect. Importantly, E. faecium-derived EVs showed an effective impact for the gastroprotective effect.


Enterococcus faecium , Stomach Ulcer , Rats , Animals , Oxidative Stress , Ulcer , Ethanol/toxicity , Stomach Ulcer/chemically induced , Stomach Ulcer/prevention & control , Stomach Ulcer/pathology , Glycoproteins
6.
Int J Biol Macromol ; 261(Pt 2): 129733, 2024 Mar.
Article En | MEDLINE | ID: mdl-38307433

The function of miRNAs in intestinal inflammatory injury regulation has been studied extensively. However, the targeted delivery of these functional nucleic acid molecules to specific organs through encapsulation carriers and exerting their functional effects remain critical challenges for further research. Here, we constructed miR-146a-5p overexpression plasmid and validated the anti-inflammatory properties in the cell model. Then, the plasmid was encapsulated by the Pickering double emulsion system to investigate the role of Pickering double emulsion system in LPS-induced acute intestinal inflammatory injury. The results showed that the Pickering double emulsion system could effectively protect the integrity of plasmids in the intestinal tract, alleviate intestinal inflammatory injury, and upregulate the relative abundance of Lactobacillus reuteri. Mechanically, in vivo and in vitro experiments have shown that miR-146a-5p inhibits TLR4/NF-κB pathway to alleviate intestinal inflammation. In addition, miR-146a-5p can also regulate intestinal homeostasis by targeting the RNA polymerase sigma factor RpoD and α-galactosidase A, thereby affecting the growth of Lactobacillus reuteri. Above all, this study reveals a potential mechanism for miR-146a-5p to treat intestinal inflammation and provides a new delivery strategy for miRNAs to regulate intestinal homeostasis.


Gastrointestinal Microbiome , MicroRNAs , Humans , Emulsions , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Inflammation/drug therapy , Inflammation/genetics
7.
ACS Appl Mater Interfaces ; 16(8): 10459-10467, 2024 Feb 28.
Article En | MEDLINE | ID: mdl-38358426

Inverted colloidal-nanocrystal-based LEDs (NC-LEDs) are highly interesting and invaluable for large-scale display technology and flexible electronics. Semiconductor nanorods (NRs), in addition to the tunable wavelengths of the emitted light (achieved, for example, by the variation of the NR diameter or the diameter of core in a core-shell configuration), also exhibit linearly polarized emission, a larger Stokes shift, faster radiative decay, and slower bleaching kinetics than quantum dots (QDs). Despite these advantages, it is difficult to achieve void-free active NR layers using simple spin-coating techniques. Herein, we employ electrophoretic deposition (EPD) to make closely packed, vertically aligned CdSe/CdS core/shell nanorods (NRs) as the emissive layer. Following an inverted architecture, the device fabricated yields an external quantum efficiency (EQE) of 6.3% and a maximum luminance of 4320 cd/m2 at 11 V. This good performance can be attributed to the vertically aligned NR layer, enhancing the charge transport by reducing the resistance of carrier passage, which is supported by our finite element simulations. To the best of our knowledge, this is the first time vertically aligned NR layers made by EPD have been reported for the fabrication of NC-LEDs and the device performance is one of the best for inverted red NR-LEDs. The findings presented in this work bring forth a simple and effective technique for making vertically aligned NRs, and the mechanism behind the NR-LED device with enhanced performance using these NRs is illustrated. This technique may prove useful to the development of a vast class of nanocrystal-based optoelectronics, including solar cells and laser devices.

8.
Cell Death Differ ; 31(3): 280-291, 2024 03.
Article En | MEDLINE | ID: mdl-38383887

Detection of cytosolic nucleic acids by pattern recognition receptors, including STING and RIG-I, leads to the activation of multiple signalling pathways that culminate in the production of type I interferons (IFNs) which are vital for host survival during virus infection. In addition to protective immune modulatory functions, type I IFNs are also associated with autoimmune diseases. Hence, it is important to elucidate the mechanisms that govern their expression. In this study, we identified a critical regulatory function of the DUSP4 phosphatase in innate immune signalling. We found that DUSP4 regulates the activation of TBK1 and ERK1/2 in a signalling complex containing DUSP4, TBK1, ERK1/2 and IRF3 to regulate the production of type I IFNs. Mice deficient in DUSP4 were more resistant to infections by both RNA and DNA viruses but more susceptible to malaria parasites. Therefore, our study establishes DUSP4 as a regulator of nucleic acid sensor signalling and sheds light on an important facet of the type I IFN regulatory system.


Interferon Type I , Membrane Proteins , Protein Tyrosine Phosphatases , Receptors, Cell Surface , Roundabout Proteins , Virus Diseases , Animals , Mice , Immunity, Innate , Interferon Type I/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Virus Diseases/immunology , Virus Diseases/metabolism , Membrane Proteins/metabolism , Roundabout Proteins/metabolism , Protein Tyrosine Phosphatases/metabolism , Receptors, Cell Surface/metabolism
9.
Microbiome ; 12(1): 33, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38374121

BACKGROUND: Domesticated pigs serve as an ideal animal model for biomedical research and also provide the majority of meat for human consumption in China. Porcine intramuscular fat content associates with human health and diseases and is essential in pork quality. The molecular mechanisms controlling lipid metabolism and intramuscular fat accretion across tissues in pigs, and how these changes in response to pig breeds, remain largely unknown. RESULTS: We surveyed the tissue-resident cell types of the porcine jejunum, colon, liver, and longissimus dorsi muscle between Lantang and Landrace breeds by single-cell RNA sequencing. Combining lipidomics and metagenomics approaches, we also characterized gene signatures and determined key discriminating markers of lipid digestibility, absorption, conversion, and deposition across tissues in two pig breeds. In Landrace, lean-meat swine mainly exhibited breed-specific advantages in lipid absorption and oxidation for energy supply in small and large intestinal epitheliums, nascent high-density lipoprotein synthesis for reverse cholesterol transport in enterocytes and hepatocytes, bile acid formation, and secretion for fat emulsification in hepatocytes, as well as intestinal-microbiota gene expression involved in lipid accumulation product. In Lantang, obese-meat swine showed a higher synthesis capacity of chylomicrons responsible for high serum triacylglycerol levels in small intestinal epitheliums, the predominant characteristics of lipid absorption in muscle tissue, and greater intramuscular adipcytogenesis potentials from muscular fibro-adipogenic progenitor subpopulation. CONCLUSIONS: The findings enhanced our understanding of the cellular biology of lipid metabolism and opened new avenues to improve animal production and human diseases. Video Abstract.


Lipid Metabolism , Muscle, Skeletal , Animals , China , Lipid Metabolism/genetics , Lipids , Muscle, Skeletal/metabolism , Obesity/metabolism , Swine
10.
Sci Rep ; 14(1): 2819, 2024 02 03.
Article En | MEDLINE | ID: mdl-38307921

Viruses are a key component of the colon microbiome, but the relationship between virome and colorectal cancer (CRC) remains poorly understood. We seek to identify alterations in the viral community that is characteristic of CRC and examine if they persist after surgery. Forty-nine fecal samples from 25 non-cancer (NC) individuals and 12 CRC patients, before and 6-months after surgery, were collected for metagenomic analysis. The fecal virome of CRC patients demonstrated an increased network connectivity as compared to NC individuals. Co-exclusion of influential viruses to bacterial species associated with healthy gut status was observed in CRC, suggesting an altered virome induced a change in the healthy gut bacteriome. Network analysis revealed lower connectivity within the virome and trans-kingdom interactions in NC. After surgery, the number of strong correlations decreased for trans-kingdom and within the bacteria and virome networks, indicating lower connectivity within the microbiome. Some co-occurrence patterns between dominant viruses and bacteria were also lost after surgery, suggesting a possible return to the healthy state of gut microbiome. Microbial signatures characteristic of CRC include an altered virome besides an altered bacterial composition. Elevated viral correlations and network connectivity were observed in CRC patients relative to healthy individuals, alongside distinct changes in the cross-kingdom correlation network unique to CRC patients. Some patterns of dysbiosis persist after surgery. Future studies should seek to verify if dysbiosis truly persists after surgery in a larger sample size with microbiome data collected at various time points after surgery to explore if there is field-change in the remaining colon, as well as to examine if persistent dysbiosis correlates with patient outcomes.


Colorectal Neoplasms , Microbiota , Viruses , Humans , Virome , Dysbiosis/microbiology , Colorectal Neoplasms/surgery , Colorectal Neoplasms/microbiology
11.
BMC Vet Res ; 20(1): 13, 2024 Jan 06.
Article En | MEDLINE | ID: mdl-38184589

Microbial fermented feed (MF) is considered a valuable strategy to bring advantages to livestock and is widely practiced. Oral supplementation of Ginseng polysaccharide (Gps) eliminated weight loss in chickens following vaccination. This study investigated the effects of the combined use of Gps and MF on growth performance and immune indices in Xuefeng black-bone chickens. A total of 400 Xuefeng black-bone chickens at the age of 1 day were randomly assigned to four groups. Normal feed group (Control group), ginseng polysaccharide (200 mg/kg) group (Gps group), microbially fermented feed (completely replace the normal feed) group (MF group), and microbially fermented feed and add ginseng polysaccharide just before use (MF + Gps group). Each group contained 5 pens per treatment and 20 birds per pen. The body weight and average daily gain in the Gps, MF, and MF + Gps groups increased significantly (P < 0.01), while the feed conversion ratio decreased significantly (P < 0.01). The combined use of MF and Gps showed a synergistic effect. There was no significant difference in villus height (cecal) between the experimental group and the Con group. The crypt depth of the three experimental groups exhibited a significantly lower value compared to the Control group (P < 0.05). The V/C ratio of the Gps group and MF + Gps was significantly increased (P < 0.05), but there was no significant difference in the MF group. Moreover, the diarrhea rate of the Gps and the MF + Gps groups was lower than that of the Con group, while that of the MF + Gps group decreased the mortality rate (P < 0.05). The serum tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6) levels in the MF, Gps, and MF + Gps groups decreased significantly (P < 0.01), the serum immunoglobulin G (IgG) levels increased significantly (P < 0.01), while the combination of MF and Gps had a synergistic effect. The combined use of Gps and MF not only further improved growth performance and immune parameters, but also reduced the diarrhea rate and mortality.


Panax , Animals , Chickens , Body Weight , Cecum , Diarrhea/veterinary
12.
J Org Chem ; 89(4): 2375-2396, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38288704

A universal glycosylation strategy could significantly simplify glycoside synthesis. One approach to achieving this goal is through acyl group direction for the corresponding 1,2-, 1,3-, 1,4-, or 1,6-trans glycosylation; however, this approach has been challenging for glycosidic bonds that require distal equatorial-acyl group direction. We developed an approach in weakly nucleophilic environments for selective 1,4-trans glycosylation directed by the equatorial-4-O-acyl group. Here, we explored this condition in other distal acyl groups and found that, besides 1,n-trans direction, acyl groups also mediated hydrogen bonding between acyl groups and alcohols. The latter showed a diverse effect and classified the acyl group direction into axial and equatorial categories. Corresponding glycosylation conditions were distinguished as guidance for acyl group direction from either category. Hence, acyl group direction may serve as a general glycosylation strategy.

13.
Animals (Basel) ; 14(2)2024 Jan 19.
Article En | MEDLINE | ID: mdl-38275780

Anemia and weaning stress are important factors affecting piglet growth performance. Spinach extract and licorice extract have been used to improve anemia and antioxidant capacity, respectively. However, whether they have synergistic effects has not been reported. To evaluate the effects of mixed spinach extract and licorice extract on growth performance, serum biochemistry, antioxidant capacity, and gut microbiota in weaned piglets, a total of 160 weaned piglets were randomly allotted to four treatments with four replications of 10 piglets each. The four treatments were as follows: control (CON) group (basal diet), spinach extract (SE) group (basal diet + 1.5 kg/t spinach extract), licorice extract (LE) group (basal diet + 400 g/t licorice extract), and spinach extract and licorice extract (MIX) group (basal diet + 1.5 kg/t spinach extract + 400 g/t licorice extract). The results showed that, compared with the CON group, diets supplemented with spinach extract and licorice extract significantly increased the average daily gain (p < 0.05), while considerably reducing the feed-to-gain ratio (p < 0.05). Moreover, the MIX group exhibited a significant up-regulation of serum total protein, globulin, albumin, glucose, and triglyceride levels in comparison to the CON group (p < 0.05). Meanwhile, both the anemia and antioxidant capacity of piglets were effectively improved. Notably, the MIX group achieved even better results than the individual supplementation in terms of enhancing growth performance, which could potentially be attributed to the increased abundance of the Rikenellaceae_RC9_gut_group. These results demonstrated that the supplementation of diets with spinach extract and licorice extract improves the absorption of nutrients from the diet and antioxidant capacity in weaned piglets.

14.
Environ Res ; 243: 117877, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38070855

In order to reduce the particulate matter pollution to human health in producing environments, series of polyethylene terephthalate/polyvinyl alcohol (PET/PVA) based nanofibrous membranes were fabricated and investigated the dust collection and antibacterial activity. Silver nanoparticles (AgNPs), berberine (Ber) and titanium oxide nanoparticles (TiO2NPs) were selected as antibacterial agents. These novel membranes were well-characterized using SEM, FTIR, TG, etc. techniques. Results of the dust filtration showed that PET/PVA/Ag membrane had the best filtration efficiency of 99.87% for sodium chloride (NaCl) and 99.89% for dioctyl sebacate (DEHS), held low pressure drop of 160.1 Pa for NaCl and 165.3 Pa for DEHS, and posed a high tensile strength of 4.91 MPa. The bacteriostasis studies exhibited that PET/PVA/TiO2 and PET/PVA/Ag membrane showed the highest bacteriological effect on Escherichia coli (98.7%) and Staphylococcus aureus (95.9%), respectively. Meanwhile, in vitro cytotoxicity test indicated no potential cytotoxicity existed in the cell culture process of these two antibacterial membranes. Moreover, the charge distribution in the nanofibers was increased by these antibacterial agents to improve the filtration performance. The dust filtration process synergistically promoted with the antibacterial process in the antibacterial membranes. It was expected that these membranes could be efficient filter medias with broad application prospects in the field of individual protection.


Metal Nanoparticles , Nanofibers , Humans , Anti-Bacterial Agents/pharmacology , Silver/pharmacology , Nanofibers/toxicity , Metal Nanoparticles/toxicity , Sodium Chloride/pharmacology , Escherichia coli , Dust
15.
Small ; 20(4): e2303560, 2024 Jan.
Article En | MEDLINE | ID: mdl-37726249

1D compound semiconductor nanomaterials possess unique physicochemical properties that strongly depend on their size, composition, and structures. ZnS has been widely investigated as one of the most important semiconductors, and the control of crystallographic orientation of 1D ZnS nanostructures is still challenging and crucial to exploring their anisotropic properties. Herein, a solution-processed strategy is developed to synthesize 1D wurtzite (w-)ZnS nanostructures with the specific <002> and <210> orientations by co-decomposing the copper dibutyldithiocarbamate {[(C4 H9 )2 NCS2 ]2 Cu, i.e., R2 Cu} and zinc dibutyldithiocarbamate (R2 Zn) precursors in the mixed solvents of oleylamine and 1-dodecanethoil. A solution-solid-solid (SSS)-Oriented growth mechanism is proposed, which includes oriented nucleation dominated and SSS growth dominated stages. The crystallographic orientation mainly depends on the interfacial energy and ligand effect. The 1D w-ZnS nanostructures with controlled crystallographic orientation display unique morphologies, i.e., <002>-oriented w-ZnS nanorod enclosed with {110} facets while <210>-oriented w-ZnS nanobelt enclosed with wide (002) and narrow (110) facets. The bandgap of 1D w-ZnS nanostructures can be tuned from 3.94 to 3.82 eV with the crystallographic growth direction varied from <002> to <210>, thus leading to the tunable band-edge emission from ≈338 to ≈345 nm.

16.
Int J Biol Macromol ; 257(Pt 1): 128609, 2024 Feb.
Article En | MEDLINE | ID: mdl-38056741

Skeletal muscle is one the largest organs of the body and is involved in animal production and human health. Circular RNAs (circRNAs) have been implicated in skeletal myogenesis through largely unknown mechanisms. Herein, we report the phenotypic and metabolomic analysis of porcine longissimus dorsi muscles in Lantang and Landrace piglets, revealing a high-content of slow-oxidative fibers responsible for high-quality meat product in Lantang piglets. Using single-cell transcriptomics, we identified four myogenesis-related cell types, and the Akt-FoxO3 signaling axis was the most significantly enriched pathway in each subpopulation in the different pig breeds, as well as in fast-twitch glycolytic fibers. Using the multi-dimensional bioinformatic tools of circRNAome-seq and Ribo-seq, we identified a novel circRNA, circKANSL1L, with a protein-coding ability in porcine muscles, whose expression level correlated with myoblast proliferation and differentiation in vitro, as well as the transformation between distinct mature myofibers in vivo. The protein product of circKANSL1L could interact with Akt to decrease the phosphorylation level of FoxO3, which subsequently promoted FoxO3 transcriptional activity to regulate skeletal myogenesis. Our results established the existence of a protein encoded by circKANSL1L and demonstrated its potential functions in myogenesis.


Muscle, Skeletal , Proto-Oncogene Proteins c-akt , Humans , Swine , Animals , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Muscle, Skeletal/metabolism , Signal Transduction , Cell Differentiation/genetics , Muscle Development/genetics
17.
J Integr Plant Biol ; 66(3): 579-622, 2024 Mar.
Article En | MEDLINE | ID: mdl-37924266

Plant viruses are a group of intracellular pathogens that persistently threaten global food security. Significant advances in plant virology have been achieved by Chinese scientists over the last 20 years, including basic research and technologies for preventing and controlling plant viral diseases. Here, we review these milestones and advances, including the identification of new crop-infecting viruses, dissection of pathogenic mechanisms of multiple viruses, examination of multilayered interactions among viruses, their host plants, and virus-transmitting arthropod vectors, and in-depth interrogation of plant-encoded resistance and susceptibility determinants. Notably, various plant virus-based vectors have also been successfully developed for gene function studies and target gene expression in plants. We also recommend future plant virology studies in China.


Plant Pathology , Plant Viruses , Plant Diseases/genetics , Plants/genetics , Plants/metabolism , China
18.
Methods Mol Biol ; 2724: 257-272, 2024.
Article En | MEDLINE | ID: mdl-37987912

Proteins form complex networks through interaction to drive biological processes. Thus, dissecting protein-protein interactions (PPIs) is essential for interpreting cellular processes. To overcome the drawbacks of traditional approaches for analyzing PPIs, enzyme-catalyzed proximity labeling (PL) techniques based on peroxidases or biotin ligases have been developed and successfully utilized in mammalian systems. However, the use of toxic H2O2 in peroxidase-based PL, the requirement of long incubation time (16-24 h), and higher incubation temperature (37 °C) with biotin in BioID-based PL significantly restricted their applications in plants. TurboID-based PL, a recently developed approach, circumvents the limitations of these methods by providing rapid PL of proteins under room temperature. We recently optimized the use of TurboID-based PL in plants and demonstrated that it performs better than BioID in labeling endogenous proteins. Here, we describe a step-by-step protocol for TurboID-based PL in studying PPIs in planta, including Agrobacterium-based transient expression of proteins, biotin treatment, protein extraction, removal of free biotin, quantification, and enrichment of the biotinylated proteins by affinity purification. We describe the PL using plant viral immune receptor N, which belongs to the nucleotide-binding leucine-rich repeat (NLR) class of immune receptors, as a model. The method described could be easily adapted to study PPI networks of other proteins in Nicotiana benthamiana and provides valuable information for future application of TurboID-based PL in other plant species.


Biotin , Hydrogen Peroxide , Animals , Plants , Nicotiana , Biotinylation , Mammals
19.
Integr Cancer Ther ; 22: 15347354231210857, 2023.
Article En | MEDLINE | ID: mdl-37961878

BACKGROUND: Children and adolescents undergoing umbilical cord blood transplantation (UCBT) are faced with severe fatigue and a decline in quality of life (QoL) during the inpatient period. OBJECTIVE: To investigate the effect of a structured exercise intervention on fatigue, QoL and clinical outcomes among children and adolescents during UCBT. METHODS: In this randomized controlled trial, participants (n = 48) were randomized to a control group (CG: usual care) or an intervention group (IG: a structured exercise intervention). Fatigue and QoL were assessed at hospital admission, 14 days after UCBT, and at discharge using linear mixed model analysis. In addition, engraftment kinetics, supportive treatment, transplant-related complications, and hospital length of stay were derived from medical records. RESULTS: 4 patients completed the study, the IG participated in an average of 2.12 (1.36-2.8) sessions with a duration of 24 (16-34) min weekly, and the total rate of adherence to the training program was 70.59%. For fatigue and QoL, there was a significant effect of time in the control group, with the total score of fatigue decreased from T1 to T2 (73.9vs 60.9, P = .001) and T1 to T3 (73.9vs 65.6, P = .049), and the QoL scores decreased from T1 to T2 (73.9vs 66.1, P = .043). The hospital length of stay was less in the intervention group (P = .034). CONCLUSION: Our randomized study indicated that structured exercise interventions might exert a protective effect by attenuating the decline in fatigue and QoL, and shortening duration of hospitalization.


Cord Blood Stem Cell Transplantation , Quality of Life , Humans , Child , Adolescent , Cord Blood Stem Cell Transplantation/adverse effects , Exercise Therapy/psychology , Hospitalization , Fatigue/therapy
20.
Int J Mol Sci ; 24(22)2023 Nov 10.
Article En | MEDLINE | ID: mdl-38003364

Mammary fat plays a profound role in the postnatal development of mammary glands. However, the specific types (white, brown, or beige) of adipocytes in mammary fat and their potential regulatory effects on modulating mammary gland development remain poorly understood. This study aimed to investigate the role of the browning of mammary fat on pubertal mammary gland development and explore the underlying mechanisms. Thus, the mammary gland development and the serum lipid profile were evaluated in mice treated with CL316243, a ß3-adrenoceptor agonist, to induce mammary fat browning. In addition, the proliferation of HC11 cells co-cultured with brown adipocytes or treated with the altered serum lipid metabolite was determined. Our results showed that the browning of mammary fat by injection of CL316243 suppressed the pubertal development of mice mammary glands, accompanied by the significant elevation of serum dioleoylphosphocholine (DOPC). In addition, the proliferation of HC11 was repressed when co-cultured with brown adipocytes or treated with DOPC. Furthermore, DOPC suppressed the activation of the PI3K/Akt pathway, while the DOPC-inhibited HC11 proliferation was reversed by SC79, an Akt activator, suggesting the involvement of the PI3K/Akt pathway in the DOPC-inhibited proliferation of HC11. Together, the browning of mammary fat suppressed the development of the pubertal mammary gland, which was associated with the elevated serum DOPC and the inhibition of the PI3K/Akt pathway.


Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Adipocytes, Brown/metabolism , Lecithins/pharmacology
...